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Abstract

This study explores the application of machine learning techniques for heart dis-
ease prediction using the UCI Heart Disease dataset. The dataset, comprising 920
entries with 16 attributes, underwent extensive preprocessing including handling
missing values, outlier treatment, and feature engineering. Multiple classifica-
tion algorithms such as K-Nearest Neighbors (KNN), Support Vector Machines
(SVM), Logistic Regression, Decision Trees, Random Forest, Naive Bayes, Gra-
dient Boosting, and XGBoost were implemented to classify patients into heart
disease risk categories. The preprocessing pipeline utilized transformations like
one-hot encoding, ordinal encoding, and imputation to ensure optimal data prepa-
ration. Models were evaluated using metrics such as accuracy, precision, recall, F1
score, and ROC-AUC to identify the most effective classifier. Confusion matrices
and visualizations provided insight into the performance of each approach on both
training and testing datasets. Results demonstrated varying performance among
the algorithms, with ensemble models showing higher accuracy and robustness.
The trained models were saved as pipelines to enable deployment in a Streamlit-
based application for real-time predictions. This research highlights the efficacy
of machine learning in medical diagnostics, particularly for heart disease, and
provides a scalable framework for implementation in clinical decision support
systems.

Keywords: Supervised Machine Learning, EDA, Classification Algorithm, Auccuracy,
Confusion Matrix
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1 Introduction

Machine learning is one of the fastest growing areas of computer science, with far-
reaching applications. It refers to the automated detection of meaningful patterns in
data. Machine learning tools are concerned with endowing programs with the ability
to learn and adapt. [1]

Machine Learning has become one of the mainstays of Information Technology
and with that, a rather central, albeit usually hidden, part of our life. With the ever
increasing amounts of data becoming available there is a good reason to believe that
smart data analysis will become even more pervasive as a necessary ingredient for
technological progress. There are several applications for Machine Learning (ML), the
most significant of which is data mining. People are often prone to making mistakes
during analyses or, possibly, when trying to establish relationships between multiple
features. [2]

Data Mining and Machine Learning are Siamese twins from which several insights
can be derived through proper learning algorithms. There has been tremendous
progress in data mining and machine learning as a result of evolution of smart and
Nano technology which brought about curiosity in finding hidden patterns in data
to derive value. The fusion of statistics, machine learning, information theory, and
computing has created a solid science, with a firm mathematical base, and with very
powerful tools.

Machine learning algorithms are organized into a taxonomy based on the desired
outcome of the algorithm. Supervised learning generates a function that maps inputs
to desired outputs.

Unprecedented data generation has made machine learning techniques become
sophisticated from time to time. This has called for utilization for several algorithms
for both supervised and unsupervised machine learning. Supervised learning is fairly
common in classification problems because the goal is often to get the computer to
learn a classification system that we have created. [3]

ML is perfectly intended for accomplishing the accessibility hidden within Big
Data. ML hand over’s on the guarantee of extracting importance from big and distinct
data sources through outlying less dependence scheduled on individual track as it is
data determined and spurts at machine scale. Machine learning is fine suitable towards
the intricacy of handling through dissimilar data origin and the vast range of variables
as well as amount of data concerned where ML prospers on increasing datasets. The
extra data supply into a ML structure, the more it be able to be trained and concern
the consequences to superior value of insights. At the liberty from the confines of
individual level thought and study, ML is clever to find out and show the patterns
hidden in the data. [4]

One standard formulation of the supervised learning task is the classification prob-
lem: The learner is required to learn (to approximate the behavior of) a function which
maps a vector into one of several classes by looking at several inputoutput examples of
the function. Inductive machine learning is the process of learning a set of rules from
instances (examples in a training set), or more generally speaking, creating a classifier
that can be used to generalize from new instances. The process of applying supervised
ML to a real-world problem is described in Figure 1.
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Fig. 1: The Processes of Supervised Machine Learning

This work focuses on the classification of ML algorithms and determining the most
efficient algorithm with highest accuracy and precision. As well as establishing the
performance of different algorithms on large and smaller data sets with a view classify
them correctly and give insight on how to build supervised machine learning models.

The remaining part of this work is arranged as follows: Section 2 presents the
literature review discussing classification of different supervised

2 Literature Review

According to Ayodele, Taiwo Oladipupo et al. [3], supervised machine learning
algorithms that deal more with classification include the following: Linear Classi-
fiers, Logistic Regression, Näıve Bayes Classifier, Perceptron, Support Vector Machine;
Quadratic Classifiers, K-Means Clustering, Boosting, Decision Tree, Random Forest
(RF); Neural networks, Bayesian Networks, and so on.

The K Nearest Neighbor (kNN) method Zhang et al. [5] has been widely used
in data mining and machine learning applications due to its simple implementation
and distinguished performance. However, setting all test data with the same k value
has been proven impractical for real applications. Zhang et al. [6] proposed learn-
ing a correlation matrix to assign different k values for different test data points,
referred to as the Correlation Matrix kNN (CM-kNN) classification. They utilized a
least-squares loss function, a graph Laplacian regularizer, and l1-norm/l2,1-norm reg-
ularizers to enhance efficiency. Experiments demonstrated its superior performance in
classification, regression, and missing data imputation.

3



These are among the most recent supervised machine learning techniques Vapnik
et al. [7]. SVM models revolve around the concept of maximizing the margin on either
side of a hyperplane separating two data classes. Kotsiantis et al. [2] demonstrated
that this approach reduces the expected generalization error effectively.

Logistic regression, as described by Newsom et al. [8], builds classification mod-
els using a multinomial logistic regression approach. It predicts class probabilities,
making it suitable for detailed and reliable predictions. Osisanwo et al. [9] highlighted
its widespread use in applied statistics and discrete data analysis, noting its robustness
and simplicity.

Gradient Boosting is an ensemble learning algorithm used for classification
tasks. Monika et al. [10] described how it iteratively minimizes a loss function to
improve model accuracy. Liew et al. [11] emphasized its flexibility, robustness, and high
performance, particularly with imbalanced datasets, while highlighting the importance
of hyperparameter tuning.

Decision Trees classify instances by sorting them based on feature values. Ayo-
dele et al. [2] and Hastie et al. [12] discussed their use in data mining and machine
learning, noting that decision trees employ pruning techniques for improved accuracy.

Random Forest is an ensemble learning algorithm known for its accuracy and
stability. Rigatti et al. [13] described its method of building multiple decision trees
using bagging and feature randomness to reduce overfitting. It provides insights into
feature importance and generalizes well across various datasets.

Gaussian Naive Bayes is a simple yet effective classifier. Isidore Jacob et al.
[14] and Sebestyen et al. [15] highlighted its independence assumption and minimal
storage requirements. Despite being less accurate in some scenarios, (author?) et
al. [16] found it superior to other methods on benchmark datasets. Its robustness to
missing values and ability to work incrementally were further discussed by Domingos
et al. [17].

XGBClassifier, based on XGBoost, offers efficient and scalable gradient boost-
ing. Chang et al. [18] detailed its features, including L1/L2 regularization, parallel
processing, and missing value handling. Chang et al. [19] emphasized its effectiveness
in predictive analytics, particularly in large-scale datasets.

Supervised machine learning techniques are applicable across numerous
domains. A number of ML application-oriented studies can be found in Setiono et al.
[20] and Witten et al. [21].

Generally, Decision Tree and Random Forest perform better with multidimensional
and continuous features, while logic-based systems excel with discrete features. Isidore
Jacob et al. [14] noted Naive Bayes’s efficiency with minimal storage space and its
robustness to missing values. Vapnik et al. [7] found that SVMs excel with non-linear
relationships and multicollinearity. Meanwhile, Zhang et al. [5] highlighted k-NN’s
sensitivity to irrelevant features, which can impact efficiency.

No single learning algorithm consistently outperforms others across all datasets,
as noted by various studies, emphasizing the need for context-specific selection.
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3 Dataset Description

The UCI Heart Disease dataset [22] is a well-known collection of data used for pre-
dicting the presence of heart disease in patients. It contains 14 attributes, including
demographic information, clinical measurements, and diagnostic results, such as age,
sex, chest pain type, resting blood pressure, cholesterol levels, and maximum heart
rate achieved. The dataset is used to train machine learning models for classifica-
tion tasks, where the goal is to predict whether a patient has heart disease based on
these features. The dataset is frequently used for benchmarking various algorithms
and understanding the relationships between different cardiovascular risk factors [22].

3.1 Age

Description: Age is the patient’s age in years, one of the most critical factors for
cardiovascular diseases.
Key insights:

• Age-related arterial stiffening leads to hypertension.
• Risk increases sharply after 45 years in men and 55 years in women.
• Younger patients with heart issues often have hereditary or congenital conditions.

Graph Analysis: The distribution is nearly normal, centered around 54 years.
The slight negative skew indicates a higher concentration of older individuals. This
implies that middle-aged and elderly individuals dominate the dataset, aligning with
the expected demographic for heart disease prevalence. The alignment of the mean,
median, and mode emphasizes the symmetric nature of the data.

3.2 Sex

Description: Sex is defined as the biological sex of the patient (Male/Female). Gender
differences influence heart disease risk.
Key insights:

• Men are at higher risk before age 50 due to higher LDL levels and lifestyle factors.
• Post-menopause, women’s risk increases due to estrogen decline.
• Symptoms like atypical pain in women often delay diagnosis.

Graph Analysis: The dataset is heavily male-dominated, with males constituting
about 79% of the samples. This imbalance highlights a potential bias in the dataset,
and models trained on it might not generalize well for females. Additionally, this
distribution might reflect real-world trends, as men are often at higher risk for certain
types of heart diseases.

3.3 Chest Pain Type (CP)

Description: Chest pain type describes the nature of chest pain: typical angina,
atypical angina, non-anginal, or asymptomatic. It is a crucial diagnostic feature.
Key insights:
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• Typical angina indicates reduced blood flow due to coronary artery disease.
• Atypical or non-anginal pain might point to non-cardiac causes.
• Asymptomatic patients are concerning due to silent ischemia risks.

Graph Analysis: Over half of the cases are asymptomatic (54%), which is a com-
mon scenario in heart diseases. Non-anginal and atypical angina follow, with typical
angina being the least common. This pattern, coupled with variations across genders,
emphasizes the importance of chest pain type in diagnosis and analysis.

3.4 Resting Blood Pressure (Trestbps)

Description: Resting blood pressure measures the systolic pressure in mmHg. High
values indicate hypertension, a key heart disease risk factor.
Key insights:

• Blood pressure ≥140 mmHg is linked to atherosclerosis and left ventricular
hypertrophy.

• Managing blood pressure can significantly reduce cardiovascular risk.

Graph Analysis: The average resting blood pressure is 132 mmHg, slightly above
the normal range (120 mmHg). The slight negative skew indicates some individuals
with significantly higher blood pressure. Such variations emphasize hypertension’s role
as a risk factor for heart diseases.

3.5 Serum Cholesterol (Chol)

Description: Serum cholesterol measures total cholesterol (mg/dL). Elevated levels
increase the risk of plaque buildup, causing arterial narrowing.
Key insights:

• LDL contributes to blockages, while HDL protects against plaque formation.
• Levels ≥240 mg/dL are linked to higher risks of strokes and heart attacks.

Graph Analysis: The average cholesterol level is 199 mg/dL, with a few extreme
values creating a long tail. Most individuals cluster near the average, but the out-
liers suggest a subset of the population at higher cardiovascular risk due to elevated
cholesterol.

3.6 Fasting Blood Sugar (FBS)

Description: FBS measures fasting blood sugar, with levels >120 mg/dL indicating
diabetes risk. High glucose levels are linked to cardiovascular complications.
Key insights:

• Diabetes accelerates atherosclerosis and damages blood vessels.
• Early detection is crucial for preventing severe outcomes.

Graph Analysis: Most individuals (approximately 83%) have normal fasting blood
sugar levels (False). The small proportion with elevated levels indicates potential
comorbidities like diabetes, which are critical in heart disease prognosis.
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3.7 Resting ECG (Restecg)

Description: Resting ECG records the heart’s electrical activity, identifying condi-
tions like ischemia or past infarctions.
Key insights:

• Normal results are a baseline for further testing.
• Abnormalities provide evidence for severe cardiac conditions.

Graph Analysis: About 60% of the samples show normal ECG results, while the
remaining indicate abnormalities such as left ventricular hypertrophy or ST-T wave
changes. This distribution suggests a mix of normal and at-risk cardiac conditions in
the dataset.

3.8 Maximum Heart Rate Achieved (Thalach)

Description: Thalach measures the highest heart rate during exercise, reflecting car-
diovascular fitness.
Key insights:

• Lower heart rates can indicate blockages or reduced cardiac function.
• Exercise tolerance is an indirect marker of heart health.

Graph Analysis: Most individuals achieve a maximum heart rate close to 138 bpm,
indicating good cardiovascular fitness for a significant portion of the population.
Outliers on the lower side suggest individuals with compromised heart function.

3.9 ST Depression (Oldpeak)

Description: ST depression measures the difference in the ST segment during exer-
cise, with higher values indicating myocardial ischemia.
Key insights:

• A crucial diagnostic tool for coronary artery disease.
• Guides decisions for further interventions like angiography.

Graph Analysis: Values near zero, indicating minimal ST depression during exer-
cise. However, the few higher values reflect individuals at higher risk for ischemia,
emphasizing its importance as a diagnostic metric.

3.10 Slope of ST Segment (Slope)

Description: The slope during peak exercise (upsloping, flat, or downsloping) reflects
blood flow.
Key insights:

• Flat or downsloping slopes suggest reduced oxygen supply to the heart.

Graph Analysis: The flat slope is the most frequent, indicating ischemia in a major-
ity of cases. The upsloping and downsloping categories offer additional diagnostic
insights, often correlated with exercise-induced stress test results.
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3.11 Number of Major Vessels (CA)

Description: The number of major vessels visible through fluoroscopy (0-3). Lower
numbers indicate more severe blockages.
Key insights:

• Fewer vessels detected correlate with worse arterial health.

Graph Analysis: Most individuals (181 samples) have zero major vessels detected,
which is indicative of less severe conditions. The distribution emphasizes the progres-
sion of heart disease severity based on the number of vessels affected.

3.12 Thalassemia (Thal)

Description: A blood disorder affecting oxygen transport, categorized as normal,
fixed defect, or reversible defect.
Key insights:

• Fixed defects indicate permanent damage.
• Reversible defects suggest treatable ischemia.

Graph Analysis: The ”normal” category is the most frequent, followed by fixed and
reversible defects. Fixed defects indicate permanent damage, while reversible defects
suggest ischemia that could potentially be treated.

4 Data Processing

1. Dataset Loading:

• The dataset was loaded in CSV file from UCI Heart Disease Dataset [22].
• Initial inspection using df.info() and df.describe() provided insights into
data types, missing values, and statistical distributions.

2. Exploratory Data Analysis (EDA):

• Distribution Analysis: Visualized each column to understand its distribution
using histograms and boxplots.

• Correlation Analysis: Created a heatmap to understand correlations between
numerical columns and identify relationships.

• Categorical Feature Analysis: Examined value counts and proportions for
categorical variables like sex, cp (chest pain type), and thal.

3. Irrelevant Column Removal:

• Dropped columns that did not add value to the prediction, such as:

– id (row identifier)
– dataset (data source information)

4. Handling Missing Values:

• Categorical Variables:
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– Columns Affected: slope, thal, exang, restecg, fbs.
– Imputation Strategy: Used the most frequent value (mode) to fill
missing values.

• Numerical Variables:

– Columns Affected: trestbps (resting blood pressure), chol (cholesterol),
thalch (maximum heart rate), oldpeak (ST depression).

– Imputation Strategy: Filled missing values using the mean.

• High-Missingness Columns:

– ca (number of major vessels): Included in categorical imputation due to its
potential relevance.

5. Outlier Detection and Treatment:

• Outlier Identification:

– Inspected boxplots for numerical variables: oldpeak, thalch, chol, and
trestbps.

– Detected extreme values deviating significantly from normal distributions.

6. Outlier Detection and Treatment:

• Outlier Identification:

– Outliers were detected by visualizing boxplots for numerical variables:
oldpeak, thalch, chol, and trestbps. Boxplots provide a graphical summary
of data distributions and help visually identify potential outliers. Outliers are
typically shown as points beyond the ”whiskers” of the boxplot.

– Mathematically, an outlier is defined as any data point that lies outside a
specific range, which is determined using the Interquartile Range (IQR).

• Outlier Handling Strategy:

– Interquartile Range (IQR) Method: The IQR is the range between the
first quartile (Q1) and the third quartile (Q3) of the data. The formula to
compute the IQR is:

IQR = Q3−Q1

– Once the IQR is calculated, outliers are identified using the following bounds:

Lower Bound = Q1− 1.5× IQR

Upper Bound = Q3 + 1.5× IQR

Any data point that falls below the lower bound or above the upper bound is
considered an outlier.

– Outlier Capping: Outliers that lie outside these bounds are not removed,
but rather capped to the nearest valid value (either the lower or upper bound).
This method prevents extreme outliers from unduly affecting the model while
retaining all observations for analysis.
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– Exceptions: For certain variables, such as the age column, large values were
not capped because they are realistic and within the expected range for the
dataset. The rationale is that extreme ages (e.g., very old individuals) may not
be outliers in the context of medical data and should be retained for analysis.

7. Encoding Categorical Data:

• Nominal Variables:

– Columns such as sex, cp, restecg, exang, thal, and fbs were one-hot
encoded.

• Ordinal Variables:

– slope: Ordinally encoded to preserve the order of categories.

8. Feature Engineering:

• Derived Features:

– bp to chol ratio: This feature represents the ratio between resting blood
pressure (trestbps) and cholesterol (chol). The rationale behind creating this
feature is to capture a relationship between two cardiovascular risk factors. It
is believed that the balance between blood pressure and cholesterol can provide
additional insight into an individual’s health risk.

– age to max hr: This feature calculates the ratio between a person’s age (age)
and their maximum heart rate (thalch). This derived feature is intended
to highlight how age influences an individual’s heart performance. As age
increases, a decrease in maximum heart rate is expected, so this ratio can offer
insight into the cardiovascular fitness of an individual relative to their age. All
of these has been done here. By this we get two new features.

• Feature Selection:

– id (row identifier): This column was dropped because it is a unique identifier for
each row, providing no meaningful information for model prediction. Including
it would have no impact on the outcome of the analysis or model training.

– dataset (data source information): This column was also dropped as it per-
tains to the source of the dataset and does not contribute directly to the
analysis or predictive modeling process.

• Reorganization:

– The columns were reorganized to prioritize more relevant features. In this
case, age (an important predictor), engineered features (bp to chol ratio and
age to max hr), and the encoded variables (such as one-hot encoded columns)
were placed at the beginning of the dataset. This reordering helps streamline
the feature set and makes it easier to manage when applying machine learning
models.

9. Automated Preprocessing Pipeline:

10



• Pipeline Components:

– Defined separate transformation pipelines for:

∗ Numerical Columns: Mean imputation and scaling using
StandardScaler.

∗ Categorical Columns: Mode imputation, one-hot encoding, and ordinal
encoding.

• Final Processed Dataset:

– Unified preprocessing using Pipeline and ColumnTransformer.
– Ensured consistent transformations for training and testing datasets.

10. Scaling and Final Adjustments:

• Feature Scaling:

– Applied StandardScaler to scale numerical features for magnitude consis-
tency.

• Final Dataset Size and Structure:

– The processed dataset contained 920 rows and 25 columns after transforma-
tions and feature engineering.

– Included engineered features and encoded variables, with missing values and
outliers resolved.

5 Research Methodology

The research methodology employed a variety of machine learning algorithms to ana-
lyze the dataset and predict the target variable effectively. Each model was carefully
chosen and implemented based on its strengths and compatibility with the problem
at hand. The dataset [22] originally consisted of 16 attributes, including id (a unique
identifier) and dataset (study location). These two attributes were excluded during
preprocessing as they do not contribute meaningful information to the prediction of
heart disease. Removing non-informative features like id helps reduce noise, simplify
the dataset, and improve model performance by focusing only on clinically relevant
attributes. Consequently, the final dataset used for analysis contained 14 attributes.
Below is a detailed explanation of the algorithms used and their justification.

Algorithms Used: The study utilized K-Nearest Neighbors (KNN) as one of the
baseline models. KNN works by comparing a test point to its nearest neighbors in
the feature space and predicting based on majority voting. It is simple yet effective,
especially when the dataset is small and the relationship between features is intuitive.

The Support Vector Machine (SVM) was applied with a linear kernel, ideal for
datasets where the decision boundary is linear. SVM creates an optimal hyperplane
to separate classes, making it powerful for high-dimensional feature spaces. Its ability
to handle outliers and complex classification tasks makes it a suitable choice.

Logistic Regression was employed for its statistical robustness and ability to pre-
dict binary outcomes. This model is well-suited for datasets where the relationship
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between features and the target variable is approximately linear. Logistic regression
also provides probabilistic predictions, which are valuable for interpreting results.

Advanced ensemble methods like the Gradient Boosting Classifier and Random
Forest were included in the study. Gradient Boosting sequentially builds models to
minimize errors, capturing non-linear relationships and improving predictive perfor-
mance. Random Forest, on the other hand, leverages an ensemble of decision trees to
enhance accuracy and reduce the risk of overfitting. This method is particularly useful
when the dataset has a mix of categorical and continuous variables.

A Decision Tree model was also tested for its simplicity and interpretability. Deci-
sion trees split the dataset based on feature thresholds, making the decision-making
process highly transparent. This model is effective for exploratory analysis and for
understanding feature importance.

The Gaussian Naive Bayes classifier was applied to handle continuous features. This
model assumes a Gaussian distribution of features and provides a computationally
efficient method for classification. It is particularly useful for datasets with overlapping
feature distributions.

Finally, the XGBoost (Extreme Gradient Boosting) algorithm was included due
to its efficiency and high performance in classification tasks. XGBoost uses gradient
boosting but optimizes it for speed and accuracy, making it a preferred choice for
structured data and competitions.

Justification: Each model was chosen with specific problem characteristics in mind.
For example, KNN was suitable for establishing a baseline because of its simplicity
and lack of assumptions about the data distribution. Meanwhile, SVM was chosen for
its ability to handle high-dimensional spaces and robustness to outliers.

Logistic Regression served as a foundational model due to its simplicity and inter-
pretability, while Gradient Boosting and Random Forest were employed to capture
complex, non-linear patterns and reduce overfitting through ensemble methods. The
inclusion of Decision Trees provided valuable insights into the feature space, which is
crucial for understanding the factors influencing predictions.

Gaussian Naive Bayes was particularly effective for features with a Gaussian-like
distribution, ensuring computational efficiency. The use of XGBoost allowed for opti-
mized performance, as it combines gradient boosting with regularization techniques
to prevent overfitting while enhancing predictive power.

All models were evaluated on performance metrics such as precision, recall, F1-
score, accuracy, and confusion matrices to ensure their appropriateness and reliability
for the dataset. This rigorous approach ensured that the research findings were robust
and well-supported by the chosen methodologies. The below table represents the
number of cases in each class of the predicting heart disease column.

6 Implementation

6.1 Tools and Libraries

The project was implemented using Python, leveraging several libraries for data
manipulation, visualization, and machine learning. The primary libraries used include:
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Heart Disease Diagnosis Count
class 0 411
class 1 265
class 2 109
class 3 107
class 4 28

Table 1: Heart Disease Class
Counts

• Pandas and NumPy: These were used for data manipulation and preprocessing
tasks, such as handling missing values, computing statistics, and preparing data for
model training [23, 24].

• Matplotlib, Seaborn, and Plotly: These libraries were utilized for data visual-
ization, enabling the creation of insightful plots such as histograms, scatter plots,
and interactive visualizations [25–27].

• Scikit-learn: This served as the primary machine learning library, providing tools
for splitting the dataset, model training, and evaluation using metrics like accuracy,
precision, recall, F1-score, and ROC-AUC [28].

• Joblib: This was used for saving and loading trained models, ensuring reusability
and efficiency during deployment [29].

6.2 Dataset Loading and Preprocessing

The dataset, related to heart disease, was loaded from an external URL using Pandas
and inspected to understand its structure. The following steps were performed:

• The size, data types, and basic statistics of the dataset were assessed using methods
such as info(), shape, and describe().

• Missing values were identified in certain columns, such as cholesterol (chol) and
resting blood pressure (trestbps), and handled appropriately during preprocessing.

6.3 Parameters

While specific hyperparameter tuning details were not explicitly defined, the model’s
performance was optimized by evaluating metrics such as accuracy, precision, recall,
and ROC-AUC. These metrics guided model adjustments and ensured robustness.

6.4 Training Process

The implementation process consisted of the following steps:

1. Data Splitting: The dataset was divided into independent variables (features)
and the dependent variable (num), representing the target. A portion of the data
(20%) was reserved for testing to ensure unbiased evaluation.

2. Model Training: Classification models were trained on the training data using
Scikit-learn. Metrics such as accuracy, precision, recall, F1-score, and ROC-AUC
were computed to assess model performance.
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6.5 Evaluation

The models were evaluated on the testing set using performance metrics like confusion
matrix, ROC curve, and classification report. This ensured that the trained model
generalized well to unseen data, validating its effectiveness.

7 Result

In this section, we present the evaluation results for multiple machine learning models
applied to the classification task. Each model’s performance is assessed using confusion
matrices, which provide insight into the types of errors made by the model, including
false positives and false negatives. In addition to the confusion matrices, we also discuss
the general behavior of the models, highlight potential areas for improvement, and
emphasize the importance of considering additional metrics such as precision, recall,
and F1-score for a more comprehensive assessment.

A confusion matrix is a fundamental tool in classification problems used to evaluate
the performance of a model. Mathematically, it is a square matrix that compares the
predicted labels against the actual labels for a classification problem, typically with
two classes (binary classification), but it can be extended to multi-class problems. The
matrix consists of four key components for binary classification: True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN).(

TP FP
FN TN

)
• True Positives (TP): Instances where both the predicted label and the actual
label are positive.

• False Positives (FP): Instances where the predicted label is positive, but the
actual label is negative.

• True Negatives (TN): Instances where both the predicted label and the actual
label are negative.

• False Negatives (FN): Instances where the predicted label is negative, but the
actual label is positive.

These values are used to calculate various performance metrics, such as accuracy,
precision, recall, and the F1-score, which are essential for understanding how well the
model is performing. For instance, accuracy is defined as

Accuracy =
TP + TN

TP + FP + TN + FN
while precision and recall are derived from

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
The confusion matrix is crucial because it provides insight into the types of errors

the model is making, helping to diagnose areas for improvement [30].
Evaluation by Confusion Matrix:

The KNN model demonstrates a relatively balanced performance in classifying both
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positive and negative cases. Although it performs reasonably well overall, there are
instances of misclassification in both directions, including false positives and false
negatives. While the confusion matrix suggests that KNN is effective for this problem,
a deeper analysis of precision and recall would be beneficial to further understand the
model’s performance, particularly in handling specific types of errors Figure 2a.

The performance of the SVM model is comparable to that of KNN, with similar
patterns of misclassification. Although the model achieves a good overall performance,
the confusion matrix suggests that there may be a slight bias towards one class. How-
ever, further analysis is required to confirm whether SVM’s predictions are biased.
While the model is reasonable, like KNN, there is room for improvement Figure 2b.

Logistic regression outperforms both KNN and SVM in terms of overall accuracy,
suggesting stronger predictive capabilities. While there are still some instances of false
positives and false negatives, these errors are fewer compared to the previous models.
Given its high accuracy, logistic regression is considered a strong candidate for this
classification task. Nonetheless, it would be prudent to compare it with other models
to determine its relative performance Figure 2c.

Gradient Boosting demonstrates the highest accuracy among all models tested,
with very few false positives and false negatives, indicating strong predictive power.
However, the possibility of overfitting must be considered, as the model performs
exceptionally well on the test data. A comparison of training and testing performance
is necessary to assess whether the model generalizes well to unseen data Figure 2d.

The Decision Tree model performs well but falls slightly behind Gradient Boosting
in terms of accuracy. While Decision Trees are interpretable, they are also prone to
overfitting, which warrants careful evaluation of the model’s performance on unseen
data. Despite this, its interpretability makes it a valuable tool, especially when
transparency in decision-making is important Figure 2e.

Random Forest exhibits excellent performance, comparable to that of Gradient
Boosting, with high accuracy and robustness. Unlike a single Decision Tree, Random
Forest is less susceptible to overfitting, making it a reliable model. However, further
comparison with Gradient Boosting is necessary to identify the most optimal model
Figure 2f.

The Naive Bayes model provides decent performance, but its accuracy generally
lags behind that of tree-based models and logistic regression. Its primary advantages
lie in its simplicity and computational efficiency, making it a suitable candidate for
baseline performance. However, for higher accuracy, other models are likely preferable
Figure 2g.

XGBoost is another model that shows high accuracy, similar to Gradient Boosting
and Random Forest. It benefits from advanced features such as regularization and
handling missing values, which enhance its performance. While it is a top contender,
further comparison with Gradient Boosting and Random Forest is needed to determine
which model performs best overall Figure 2h.

The choice of the best model depends on the specific priorities of the task at hand.
For applications where accuracy is the primary concern, Gradient Boosting, Random
Forest, and XGBoost are the strongest contenders. On the other hand, if interpretabil-
ity is a key requirement, the Decision Tree model, despite slightly lower accuracy, may
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(a) KNN Classifier (b) SVM Classifier

(c) Logistic Regression Classifier (d) Gradient Boosting Classifier

(e) Decision Tree Classifier (f) Random Forest Classifier

(g) Gaussian Naive Bayes Classifier (h) XGBoost Classifier

Fig. 2: Confusion Matrix for all Models

be preferred. It is important to note that this evaluation is based primarily on confu-
sion matrices. To gain a more comprehensive understanding of model performance, we
recommend incorporating additional metrics, such as precision, recall, and F1-score.
Furthermore, a thorough check for overfitting, by comparing the models’ performance
on both training and test data, is essential to ensure the robustness of the selected
model.

model performance:
The performance of various machine learning models for predicting heart disease was
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evaluated using metrics such as accuracy, precision, recall, F1-score, and Root Mean
Square Error (RMSE). Each model’s performance is summarized below.

The K-Nearest Neighbors (KNN) model demonstrated high accuracy on both
training and testing datasets, highlighting its strong overall performance. It exhib-
ited high precision, making relatively few false positive predictions. However, its recall
was slightly lower, indicating that some positive cases were missed. The F1-score
was high, showing a good balance between precision and recall. Additionally, its low
RMSE suggested that the predictions were close to actual values, further confirming
its reliability.

Similarly, the Support Vector Machine (SVM) model achieved strong performance
across all metrics. It performed comparably to KNN, handling the complexities of the
dataset effectively. With high accuracy, precision, recall, and F1-score, along with a
low RMSE, SVM proved to be a robust classifier for the task.

The Logistic Regression model also showcased competitive performance. It
achieved metrics similar to those of KNN and SVM, with high accuracy, precision,
recall, and F1-score. Its low RMSE underscored its reliability, making it a robust and
interpretable choice for predicting heart disease.

The Gradient Boosting Classifier emerged as one of the top-performing models,
delivering exceptional results across all evaluation metrics. Its high accuracy, precision,
recall, and F1-score highlighted its capability to capture complex patterns in the data.
With a very low RMSE, it stood out as a highly effective model for this problem.

The Decision Tree Classifier performed well but was slightly less accurate than
other models like Gradient Boosting or Random Forest. Although it achieved high
accuracy, its precision and recall were comparatively lower, resulting in a modest F1-
score. This suggests that the model might have made more errors in certain cases, yet
its simplicity and interpretability remain advantageous.

The Random Forest Classifier, an ensemble of decision trees, demonstrated out-
standing performance, comparable to Gradient Boosting. It achieved high accuracy,
precision, recall, and F1-score, along with a low RMSE. Its ability to combine the
strengths of multiple trees ensured robust predictions, making it a top contender.

The Gaussian Naive Bayes model performed reasonably well, achieving high accu-
racy and precision. However, its recall and F1-score were relatively lower, indicating
some difficulty in identifying all positive cases. This performance can be attributed
to the model’s assumption of feature independence, which may not hold true for the
dataset.

Finally, the XGBoost Classifier, another gradient boosting algorithm, delivered
remarkable performance. It matched Gradient Boosting in accuracy, precision, recall,
and F1-score while achieving a very low RMSE. Its advanced features, such as regu-
larization, allowed it to capture complex patterns effectively, solidifying its position
as one of the top-performing models.

This Table 2 shows the performance on the Training Dataset and the Table 3
shows the performance on Testing dataset

Gradient Boosting, Random Forest, and XGBoost emerged as the best models,
achieving exceptional results across all metrics. KNN, SVM, and Logistic Regression
also performed well and demonstrated their reliability. Decision Tree and Naive Bayes,
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Model Accuracy Precision Recall F1-Score RMSE
KNN 0.67 0.65 0.68 0.66 0.95
SVM 0.61 0.58 0.62 0.58 1.04
Logistic Regression 0.62 0.59 0.63 0.6 0.98
Gradient Boosting 0.93 0.94 0.94 0.94 0.4
Decision Tree 1.0 1.0 1.0 1.0 0.0
Random Forest 1.0 1.0 1.0 1.0 0.0
Naive Bayes 0.36 0.51 0.36 0.37 2.2
XGBoost 1.0 1.0 1.0 1.0 0.0

Table 2: Training Performance

Model Accuracy Precision Recall F1-Score RMSE
KNN 0.57 0.5 0.57 0.52 1.06
SVM 0.54 0.46 0.54 0.48 1.06
Logistic Regression 0.55 0.48 0.55 0.51 0.99
Gradient Boosting 0.6 0.58 0.6 0.58 0.94
Decision Tree 0.55 0.56 0.55 0.55 1.03
Random Forest 0.59 0.54 0.59 0.56 0.99
Naive Bayes 0.33 0.47 0.33 0.32 2.11
XGBoost 0.61 0.6 0.61 0.6 0.96

Table 3: Testing Performance

while slightly less accurate, provided valuable insights. The selection of the most suit-
able model depends on the priorities of the task. For instance, models like Gradient
Boosting and Random Forest would be ideal for maximizing recall, while Logistic
Regression offers a simpler and more interpretable alternative.

The Decision Tree model performed exceptionally well on all metrics, achieving
perfect scores (1.00 for accuracy, precision, recall, and F1-score) and zero errors (0.00
RMSE). This suggests that the model is highly effective at classifying the data and
predicting both the positive and negative classes correctly. However, it’s crucial to
ensure that the dataset used is not overly simplified or imbalanced, as perfect scores
can sometimes be a result of overfitting, especially in small datasets. It may also be
beneficial to cross-validate the model with different datasets to ensure its generaliz-
ability. The Decision Tree model shows outstanding performance across key evaluation
metrics, making it a strong candidate for the classification task at hand, assuming the
dataset is representative and appropriately balanced Table 4.

Metric Best Model Score
Accuracy Decision Tree 1.00
Precision Decision Tree 1.00
Recall Decision Tree 1.00
F1-Score Decision Tree 1.00
RMSE Decision Tree 0.00

Table 4: Best Model on Train-
ing Dataset
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XGBoost emerged as the best model in terms of accuracy, precision, recall, and
F1-Score, making it the top choice for classification tasks in this project. However, its
scores indicate moderate performance, suggesting that further optimization, such as
feature engineering, hyperparameter tuning, or adding more data, is needed. Gradient
Boosting performed better in terms of RMSE, which, although not a primary metric for
classification, reflects the model’s stability in prediction. It might be worth exploring
its performance further for tasks requiring consistent predictions Table 5.

Metric Best Model Score
Accuracy XGBoost 0.61
Precision XGBoost 0.60
Recall XGBoost 0.61
F1-Score XGBoost 0.60
RMSE Gradient Boosting 0.94

Table 5: Best Model on Testing
Dataset

8 Performance Analysis of Machine Learning Models

This section presents a detailed performance analysis of several machine learning algo-
rithms based on various evaluation metrics. These metrics include execution time,
classification accuracy, precision for both ”YES” and ”NO” classes, the Kappa statis-
tic, Mean Absolute Error (MAE), and the percentage of correctly and incorrectly
classified instances Table 6.

8.1 Execution Time

The execution time for each algorithm varies significantly. The K-Nearest Neigh-
bors (KNN) algorithm is the fastest, taking only 0.008533 seconds, which is expected
since KNN does not involve complex training and performs most of the computation
during testing. Conversely, Gradient Boosting and Naive Bayes take significantly
longer at 1.314636 and 1.148516 seconds, respectively. Gradient Boosting is compu-
tationally intensive because it builds multiple sequential trees, while the long runtime
for Naive Bayes might be due to data preprocessing overhead or inefficiencies in
its implementation. XGBoost, an optimized boosting method, has a moderate run-
time of 0.409072 seconds, balancing efficiency and complexity. While time is crucial
in applications requiring real-time predictions, algorithms like Gradient Boosting
and XGBoost may still be viable when accuracy is prioritized over speed.

8.2 Classification Accuracy and Error

The percentage of correctly classified instances is a primary indicator of the model’s
effectiveness. XGBoost outperforms all other models, correctly classifying 61.41% of
instances, followed closely by Gradient Boosting with 60.33% Table 6. This demon-
strates the power of boosting techniques in capturing complex relationships within
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the dataset. On the other hand, Naive Bayes has the lowest classification accu-
racy at 33.15%, highlighting its limitations. The high incorrectly classified percentage
(66.85%) for Naive Bayes shows that its strong assumption of feature independence
does not align well with the dataset’s characteristics. In contrast, the lower error rates
for XGBoost (38.59%) and Gradient Boosting (39.67%) make them more reliable
for practical applications.

8.3 Kappa Statistic

The Kappa statistic measures the agreement between predicted and actual val-
ues while accounting for the possibility of agreement occurring by chance Table 6.
XGBoost achieves the highest Kappa score of 0.4359, indicating moderate agreement
and solid performance. Gradient Boosting follows closely with a score of 0.4142.
These values suggest that these models capture the underlying patterns of the data
effectively. Conversely, Naive Bayes has the lowest Kappa score of 0.1911, reflecting
poor agreement and further emphasizing its inability to model the dataset effectively.
Models with higher Kappa statistics, like XGBoost, are more dependable for making
predictions.

8.4 Mean Absolute Error (MAE)

MAE represents the average magnitude of errors in predictions, regardless of direc-
tion. Models with lower MAE values make predictions that are closer to the true
values. Both Gradient Boosting and XGBoost achieve the lowest MAE of 0.5434,
reinforcing their reliability in this dataset. In contrast, Naive Bayes has a signifi-
cantly higher MAE of 1.5652, indicating that its predictions deviate substantially from
the true labels. This metric confirms the superior accuracy of ensemble models like
XGBoost and Gradient Boosting compared to simpler models like Naive Bayes.

8.5 Precision for ”YES” and ”NO” Classes

Precision measures the proportion of true positive predictions out of all positive pre-
dictions. For the ”YES” class, XGBoost achieves the highest precision at 0.5206,
followed by Gradient Boosting at 0.4475. This indicates that these models are
effective at minimizing false positives when predicting the positive class. Similarly,
XGBoost and Gradient Boosting excel in precision for the ”NO” class, reflecting
their balanced performance across both classes. On the other hand, Naive Bayes
struggles with precision for both classes, achieving the lowest values of 0.2649, making
it unsuitable for applications where minimizing false positives is critical Table 6.

8.6 Classification Categories

The algorithms are grouped into four categories: Functions, Boosting, Trees, and
Bayes. Models under the Boosting category, such as Gradient Boosting and
XGBoost, show superior performance due to their iterative approach, where each
model learns from the errors of the previous one. Tree-based models, like Random
Forest and Decision Tree, perform moderately well but fall short of the boosting
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methods. Models categorized as Functions, including KNN, SVM, and Logistic
Regression, exhibit average performance. Finally, the Bayes category, represented
by Naive Bayes, is the weakest performer due to its unrealistic assumption that
features are independent, which does not hold true for this dataset Table 6.

This analysis from Table 6 highlights the strengths of ensemble methods, particu-
larly XGBoost and Gradient Boosting, in handling complex datasets. Their ability
to build robust models through iterative learning makes them the most suitable choices
for this dataset. Simpler models like KNN, SVM, and Logistic Regression provide
average performance but are outperformed by ensemble techniques. Naive Bayes,
although fast, fails to provide reliable predictions due to its unrealistic assumptions.
Based on the results, XGBoost and Gradient Boosting should be prioritized in
applications requiring high accuracy and balanced predictions. The final choice of the
model should also consider the computational constraints and the specific requirements
of the application Table 6.

Algorithm Time % Correct % Incorrect Attributes Instances Kappa MAE Prec. YES Prec. NO

KNN 0.01 56.52 43.48 16 920 0.35 0.64 0.34 0.34
SVM 0.07 53.8 46.2 16 920 0.3 0.66 0.31 0.31
Log. Reg. 0.03 54.89 45.11 16 920 0.33 0.61 0.32 0.32
Gradient Boosting 1.31 60.33 39.67 16 920 0.41 0.54 0.45 0.45
Decision Tree 0.01 55.43 44.57 16 920 0.37 0.62 0.41 0.41
Random Forest 0.27 59.24 40.76 16 920 0.4 0.58 0.38 0.38
Naive Bayes 1.15 33.15 66.85 16 920 0.19 1.57 0.26 0.26
XGBoost 0.41 61.41 38.59 16 920 0.44 0.54 0.52 0.52

Table 6: Performance Comparison between all Machine Learning Models

9 Discussion

9.1 Interpretation of Results and Their Significance

The study evaluated various machine learning algorithms to classify heart disease risk
using the UCI Heart Disease dataset. Among the tested models, ensemble methods
such as Gradient Boosting, Random Forest, and XGBoost consistently outperformed
others in terms of accuracy, precision, recall, and F1-score, with XGBoost emerging
as the top-performing model during testing (accuracy: 61.41%, F1-score: 0.60). These
results underline the effectiveness of ensemble techniques in capturing complex, non-
linear relationships in medical data.

The superior performance of Gradient Boosting and XGBoost demonstrates their
ability to generalize well, even in datasets with overlapping class distributions and
imbalanced data. Conversely, simpler models like Logistic Regression and KNN exhib-
ited moderate performance, highlighting their limitations in handling intricate feature
interactions present in medical datasets. The Decision Tree model, while interpretable
and achieving high training scores, was prone to overfitting, underscoring the impor-
tance of regularization mechanisms in tree-based models. The findings suggest that
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ensemble methods are well-suited for clinical decision support systems where accurate
predictions are crucial.

9.2 Addressing Anomalies or Unexpected Findings

• Perfect Training Scores with Decision Tree and Random Forest Mod-
els: Both models achieved perfect accuracy, precision, recall, and F1-scores during
training, which is indicative of overfitting. The testing performance of these
models dropped significantly, confirming the hypothesis. This highlights a need
for hyperparameter tuning and cross-validation to prevent overfitting in future
implementations.

• Naive Bayes’ Poor Performance: Naive Bayes significantly underperformed,
with an accuracy of 33.15% and a high RMSE of 1.57. This likely stems from its
assumption of feature independence, which is unrealistic for this dataset. Medi-
cal data typically involve correlated features (e.g., cholesterol and blood pressure),
which the Naive Bayes model fails to account for.

• Gradient Boosting’s Computational Demand: While Gradient Boosting
demonstrated strong predictive performance, it required the longest execution
time (1.31 seconds). This may limit its utility in real-time applications unless
computational resources are optimized.

• Moderate Performance of SVM: Despite its theoretical strength in high-
dimensional spaces, SVM exhibited suboptimal performance with an accuracy of
54%. This might result from a lack of tuning or the kernel selection not aligning
well with the dataset’s characteristics.

10 Conclusion

This study explored the application of machine learning techniques to predict heart
disease risk using the UCI Heart Disease dataset, evaluating nine models. Ensemble
methods, particularly Gradient Boosting, Random Forest, and XGBoost, consistently
outperformed other models, excelling in accuracy, precision, recall, and F1-score.
XGBoost, in particular, was identified as the top-performing model due to its robust-
ness and scalability. The research highlighted the strengths of ensemble learning in
medical diagnostics but also underscored the limitations of simpler algorithms like
Naive Bayes, which struggled due to unrealistic assumptions, and Decision Trees,
which tended to overfit. The study achieved its objectives of implementing and
comparing multiple models, ensuring high-quality input data, and identifying the best-
performing algorithms. Future research could focus on addressing data imbalance,
hyperparameter optimization, enhanced feature engineering, model interpretability,
scalability to real-world applications, and the integration of temporal data for dynamic
risk assessments.
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